
Journal of  Statistical Physics, VoL 80, Nos. 5/6, 1995 

Quasistationary Hydrodynamics for the 
Boltzmann Equation 

A. V. Bobylev 1 

Received October 12, 1994," final March 6, 1995 

The Boltzmann equation solutions are considered for small Knudsen number. 
The main attention is devoted to certain deviations from the classical Navier- 
Stokes description. The equations for the quasistationary slow flows are derived. 
These equations do not contain the Knudsen number and provide in this sense 
a limiting description of hydrodynamic variables. In the isothermal case the 
equations reduce to incompressible Navier-Stokes equations for bulk velocity 
and pressure; in the stationary case they coincide with the equations of slow 
nonisothermal flows. It is shown that the derived equations, unlike the Burnett 
equations, possess all principal properties of the Boltzmann equation. In one 
dimension the equations reduce to a nonlinear diffusion equation, being exactly 
solvable for Maxwell molecules. Multidimensional stationary heat transfer 
problems are also discussed. It is shown that one can expect an essential dif- 
ference between the Boltzmann equation solution in the limit of continuous 
media and the corresponding solution of Navier-Stokes equations. 

KEY WORDS: Boltzmann equation; Chapman-Enskog expansion; Navier- 
Stokes equations; quasistationary solutions. 

1. I N T R O D U C T I O N  

It  is well  k n o w n  tha t  for small  K n u d s e n  n u m b e r s  Kn ,~ 1 the B o l t z m a n n  

equa t i on  so lu t ions  can  be  a p p r o x i m a t e d  by the  local ly  Maxwe l l  distr i-  

bu t ion  wi th  p a r a m e t e r s  p(x ,  t) (densi ty) ,  u(x ,  t) (veloci ty) ,  and  T(x ,  t) 
( t empera tu re )  sat isfying h y d r o d y n a m i c  equa t ions .  U s i n g  the s t anda rd  
C h a p m a n - E n s k o g  m e t h o d ,  ~1"2) we ob t a in  the  Eu le r  equa t ions  for Kn = 0, 

then consequen t ly  compress ib le  N a v i e r - S t o k e s  e q u a t i o n s  (first o rde r  wi th  

respect  to Kn ,~ 1), Burne t t  e q u a t i o n s  ( second  order) ,  etc. E v e n  for the  
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simplest initial value problem in infinite or periodic domain the direct 
use of the Burnett (and also the next super-Burnett) equations is impos- 
sible because of nonphyscial instability of the global equilibrium state 
(p = const, u = 0, T =  const) for these equations t3~. Therefore the Euler and 
compressible Navier-Stokes equations remain basic equations for a 
description of the Boltzmann equation asymptotic with Kn--, 0. For this 
reason we can term these equations the standard hydrodynamic equations 
for the Boltzmann equation. The present paper is devoted to the considera- 
tion of some deviations (real or imaginary) from these usual equations. 

We mention two such well-known deviations. In both cases the 
hydrodynamic values satisfy not the standard hydrodynamic equations, but 
(1) incompressible Navier-Stokes equations ta'5~ or (2) the so-called SNIF 
equations (slow non isothermal flows; for a review see ref. 6). In these cases 
the typical gas velocity u and the Mach number M are small (u ~ M ~ Kn, 
and the Reynolds number Re ~ const with Kn ~ 0. The typical time has in 
case 1 the order Kn-~. As to case 2, the authors of this approach con- 
sidered mainly the stationary SNIF equations, t6~ 

In the first case the main attention after the publication of the basic 
paperst4. 5~ was devoted to the clarification of the corresponding limit tran- 
sition.tT, 8~ In recent paper tg~ incompressible Navier-Stokes equations were 
derived directly from the Hamiltonian dynamics. However, to the best of 
the author's knowledge, the connection between this approach and SNIF 
equations has not been discussed. 

The SNIF equations were derived in the beginning of 1970s and dis- 
cussed in detail in the papers of M. N. Kogan, V. S. Galkin, and O. G. 
Fridlender (one can find references in the review in ref. 6). They were inter- 
ested mainly in so-called thermal stress convection, which seems to be the 
most important physical effect predicted by this theory. Therefore some 
other interesting aspects of this approach were not discussed in detail, in 
particular nonstationary problems. The majority of publications on SNIF 
theory are devoted to stationary problems. Even in refs. 10 and 11, where 
the stability of equilibrium solutions is analyzed for SNIF equations, the 
authors considered the dispersion relation only and did not define explicitly 
the complete nonstationary equations. Therefore the problem of construc- 
tion of the correct nonstationary SNIF equations remains unclear. 

One of the goals of the present paper is an accurate derivation and 
investigation of such nonstationary (quasistationary, as we shall see below) 
equations. These equations for the stationary case coincide with SNIF 
equations. They also admit the particular class of isothermal ( T =  const) 
solutions that corresponds to incompressible Navier-Stokes equations. 

We unify in such a way the two above-mentioned cases 1 and 2 in the 
more general class of equations that we term quasistationary slow flow 
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(QSF) equations. The equations describe the time evolution of limiting 
(with Kn ~ 0) values and do not contain the Knudsen number. 

It should be noticed that the same limit of the Boltzmann equation 
was considered briefly in ref. 4, where the general form of such equations 
(with undetermined coefficients) was indicated without details of calcula- 
tions. We shall derive below the equations in explicit form and compare 
them in Section 3 with related results of ref. 4. 

In Section 2 we formulate the problem and derive the QSF equations. 
The derivation is based on reexpansion of the Chapman-Enskog series, but 
it is easy to verify that the result does not change if we use the direct 
(Hilbert-type) expansion of the Boltzmann equation. The principal proper- 
ties (conservation laws and H-theorem) of the QSF equations are proved 
in Section 3, so that these equations are quite correct, in contrast to the 
Burnett equations. We also consider some interesting special classes of 
solutions in Section 3 and describe in detail in Section 4 a class of solutions 
depending on one space variable. Roughly speaking, the equations reduce 
to a single quasilinear diffusion equation in this simple case. We show also 
that this diffusion equation can be linearized for Maxwell molecules. In 
Sections 5 and 6 we consider multidimensional problems and discuss in 
detail the non-Navier-Stokes limit at Kn = 0 of the stationary temperature 
and density fields for a gas confined between two nonsymmetrical surfaces 
with different temperatures. It is shown that the SNIF theory and the 
Navier-Stokes equations lead to essentially different results for the limiting 
case Kn = 0. 

2. D E R I V A T I O N  OF BASIC E Q U A T I O N S  

We consider the Boltzmann equation for a distribution function 
f ( x,  v, t) ( x E R 3, v ~ R 3, and t s R+ denote, respectively, space coordinate, 
velocity, and time) 

f , + v . f , . = e - ' I ( f , f ) ,  f l , = o = f o  (1) 

where the dot means a scalar product, l(f ,  f )  denotes the collision integral, 
and e denotes the Knudsen number, which is a small parameter of this 
problem. 

Equation ( 1 ) is written in dimensionless variables, so that all (except e) 
typical parameters of the problem (length, thermal velocity, etc.) are of 
order of unity. Roughly speaking, one can distinguish three typical time 
scales : (1) tl ~ e is the mean free path time; (2) t 2 ~ 1 is the typical time for 
sound to travel macroscopic distances; (3) t 3 ~ e  -~ is the typical time of 
dissipative processes (viscosity, heat transfer). We are mostly interested in 



1066 Boby|ev 

solutions of (1) varying only on the dissipative time scale. Changing there- 
fore the time variable t to et, we obtain the quasistationary form of the 
Boltzmann equation 

ef, + v. f x = e - '  I(f, f )  (2) 

Solutions of (2) will be called quasistationary if their dependence on 
e is formally analytic in the neighborhood of the point e = 0. It is clear that 
the quasistationary solutions are a special case of the normal solutions of 
the Hilbert class. (2) Hence, for constructing the solutions of (5) we do not 
need to do complex direct calculations with the Boltzmann equation, since 
it is possible to use the well-known results of the Chapman-Enskog 
expansion. 

We shall use the common notations 

p= I dv f(v), u = I  f dv f(v)v, p= ~ f dv f ( v ) (v -u )2= pT (3) 

for a density p, mean velocity u e R  3, and pressure p=pT,  T being the 
gas temperature. It follows from the Boltzmann equation (2) that the 
hydrodynamic variables p(x, t), u(x, t), p(x, t) satisfy the following exact 
(but unclosed) system of equations: 

a a 
�9 E ~t aUk + ~Xi (pUiUk + P~ik + a~k) = 0 

e~t(pu2+ 3p)+o-~i[ui(pu2+ 5p)+  2(Ukaik + qi)] = 0 

(4) 

where the standard summation rule (i, k =  1, 2, 3) and the following 
notations are used: 

aik(x, t) = f dv f (x ,  v, t)(cick - �89 Icl z ~ik), 

q= �89 I dv f (x ,  v, t)c Icl 2 

c = v -  u ( x ,  t )  

(5) 

The system is written in the form of conservation laws; we can also 
transform it to the Langrangian form 

e +~x.PU =0,  p e-~+u Uk+ = 0  (6) 

ap C3p 5 a 2 / C3U; a q 
u bTx + )=0 (7) 
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We shall use the well-known Chapman-Enskog expansion: 

G i k  = ~ ~ i k  ' q = e n q  ( n )  

n = 1 n =  1 

where 

(8) 

(aui OUk 2 ~ ), q,~=_X(T) O_~ (9) 

with the known coefficients of viscosity #(T)  and heat transfer 2(T). The 
next terms in the sums (8) correspond to higher approximations (Burnett, 
super-Brunett, etc.) In particular the Burnett formula for ~r ~2~ reads (see, for 
example, ref. 16, p. 276) 

a,2) I.t2 (K, Op OT _ 02T K3 OT OT ( 0 ) O u ,  
o- =7 Ux, OxiOx +K, 

( 0 10p Ou, Ouj /Oui\ 01,lk~ __ /OUi~/OUk~ ~ 
-Ks \-~x~p~xj4 0x, Oxk I-2 \Ox,/-~xj)+K6 \Oxk/\Oxj// (10) 

where 

p=pT, <A,.k> = �89 + Ak;) + ] ~J;k Ajj ( 11 ) 

The coefficients Ks(T) (s = 1,..., 6) depend on molecular interaction law. 
Our goal is to construct the leading asymptotic terms with e ~ 0. 

Putting in (9) e = 0 ,  we notice that crik=0 and q = 0  with e = 0 ;  therefore 
we obtain for the limiting hydrodynamic values p(O), u(O), and p(O) the 
stationary Euler equations 

0 .p(0)u(O)=0, 0 t,,(o), (o),,<O)+p(m6~,)=0 
Ox " '  " *  

O In p(O)[p(O)] -5/3 = 0 (12) //(0) 
O X  

Thus we have to choose a certain stationary solution of the Euler 
equations as the. leading asymptotic term. We do not consider discon- 
tinuous solutions (shock waves) since this approach is not applied to the 
description of such solutions. Let us assume that here are no shocks in the 
domain under consideration and that the limiting solution (p~O), utm, p~O)) 
is sufficiently smooth. Then two essentially different cases are pos- 
sible: (1) u~~ and (2) u~~ The trivial solution pC~ 
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ut~ const, p(O)= const is included automatical ly  in case 2 by the trans- 
ition to a uniformly moving reference system (the Bol tzmann equat ion is 
invariant under this t ransformation).  We suppose that  there exists 
asymptot ic  expantions 

p=p(~ u=u(~ p=p(~ 

where p("), u ('), p("), n = 0, 1 ..... do not depend on e. In the cases 1 and 2 
the limit ( e = 0 )  Reynolds numbers  are, respectively, Reo=OO and 
Re o = const. We restrict ourselves below to case 2, that  is, u (~ = 0. Then the 
system (12) reduces to the equat ion grad p(O)= 0, i.e., its general solution 
for this case is 

p(O) = p~O)(x ' t), u~~ = 0, p~O) = p(O)(t ) (13) 

with arbi trary functions p~~ t) and p(~ Let us consider now Eqs. (4) 
in the first order in e: 

Op (I) 
Op (~ 0 _(o).(~)=0, - - = 0  
0--7- + b-~x, t" " '  Oxk 

OPt~ p~ d i v u f ~ ) O t  = ~ 0_~x 2 ( T 2  0 to) ) OTl~ 
(14) 

TtO) =ptO)/p(O). To close this system it is necessary to add to it a single 
(vector) equat ion of the second order in e that  defines the time evolution 
of the mean velocity: 

1) Lx~ U(I) 0P (2) 
P(O)( O+u' "OXJ k +~Xk 

with 

0 [ r,o,)/Oul"\ 
-c3x,  2u( \-~Xk/--~ t - -  JJ (15) 

-(2)t T(O)) = r _(2)-I 
ik  [ LOik -I I.=0, p=#0), 7"= T (0l 

In other words, we can omit  in the Burnett  expression for 0 -(2) in (10) ik 
certain terms which are propor t ional  to spatial gradients of the mean 
velocity and the pressure since 

Oui = O(e), Op = O(e2), OT = O(1) 
Oxk Ox~. OXk 
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Then we obtain the same formula as in refs. 6 and 16: 

a(2) lz2(T)~ 02T K3 OT O~xkl ik = pT \ K 2 ~  q- T c3xi (16) 

In the general c a s e  K2.3 depend on temperature T; however, it is 
important that K2, 3 = const for hard spheres and powerlike potentials. For 
example, K2 = K3 = 3 for Maxwell molecules and K2 = 2.418, K 3 = 0.219 for 
hard spheres. (6) Therefore we do not consider in detail the dependence of 
K2.3 on temperature. 

The second-order (in e) equations for pt~)(x, t) and p(~)(t) do not affect 
the leading asymptotic terms, and therefore we do not consider these 
equations. The leading asymptotic terms p(~ t), p(~ ut~)(x, t), and 
p(2)(x, t) are defined by Eqs. (14) and (15). Finally we substitute (16) into 
(15) and formulate the following result. 

P r o p o s i t i o n .  The asymptotic e ~ 0  expansion of the solution of 
Eqs. (7) satisfying the additional condition u = O(e) has the following form: 

p=p(x ,  t)+..., u=tii(x,  t) +..., p=po(t)[1 +ert(t)+e2fi(x, t) +.. .]  

where dots denote higher order terms. The leading asymptotic terms can be 
obtained from the following equations for the functions/% ~, t% and P0 (the 
sign ,,~ is omitted below): 

-~Pt + div p u  = 0 

Opo(t) . 5 2 T=PO 
~- -t- ~ Po div u = ~ div 2(T) grad T, P 

a ( aui , / 02T 
- - +  "T c3xi OXk.] / tC =po(t  ) 

(17) 

Remark.  Formally speaking, the main correction (of order e) to 
po(t) is defined by the function n(t), but it does not change gradp. There- 
fore the function fi(x, t) is more important; as to n(t), it can be defined 
from the equations of the next approximation. 

It is natural to call Eqs. (17) the equations of quasistationary slow 
flow (QSF); they reduce to the SNIF equations (6) in the stationary case 
(see also Introduction). We can consider for these equations different initial 
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boundary value problems. These equations include formally the third-order 
derivatives, but it is possible to exclude them by the equation 

Po 22(T) LIT= --22'(T)(grad T) 2 + 5po div u + 3 -~-,  A T =  divgrad T 

Therefore in the case of purely diffusive reflection we obtain for e ~ 0 
the boundary conditions (6) 

COTw (18) 
TIr  = Tw, u . l r = 0 ,  u~lr=fl Ox~ 

where Tlr and Ulr denote boundary (on the surface F)  values of T and 
u, T,, is the wall (surface F)  temperature, and u,, and ur are, respectively, 
normal and tangential velocity components. The last relation expresses the 
known condition of the temperature slip; we obtain the standard condition 
Ulr = 0 for an isothermal wall. The boundary conditions (18) define com- 
pletely the statement of boundary values problems for the QSF equations 
(17). 

3. PRINCIPAL PROPERTIES OF QSF EQUATIONS 

We can eliminate density p(x, t)= po/T(x, t) from Eqs. (17) and write 
them in the form of conservation laws (mass, momentum, and energy) 

0 p0 + 0_~p_~ U~ = 0 ' po=p(t ) (19) 
COt T 

Ot T uk + U~Uk + popc~k 

o / oui . 2 /  x3oro )\ 

ot~Po+ ~poui -2(T)ox i3  = 0  

(20) 

(21) 

We show also that the Boltzmann H-theorem is valid for this system. 
Putting 

o513 
s = In -z-7-~., = In p~/3 T -5/3 (22) 

port) 
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we obtain 

Os Os 0 22(T) OT 
~ + u ' ~ x - t  Ox 3po(t) Ox 0 (23) 

Hence, 

c3 2 
ps + div psu + ~-T div 2(T) grad T = 0 

Finally, we put 

h = p(ln p T  - 3/2 + C) (24) 

with irrelevant constant C and obtain the H-theorem in the following form: 

Oh . .  [ ,  . 2(T) -] ,;t(T) 

0-~q- L ~ J T 2 
m y / n u - t - ~ g r a d  T = (grad T) 2 4 0  (25) 

Thus, Eqs. (17) possess an analog of the Boltzmann H-theorem, in 
contrast to the full Burnett equations. (3) 

Let us compare Eqs. (19)-(21) with the related Eqs. (5.8) of ref. 4 for 
the case d =  3, Po = const. The equations in ref. 4 contain undetermined 
functions k, v, p, 0~, ), of T. We can write now explicit formulas for these 
functions. The function p(T)  in ref. 4 coincides with the function/z(T) in 
Eq. (20). The other functions from ref. 4 read 

2 2 _ _ _ / z  :K z S~jkj 
ku (T )=-~2 (T )60 . ,  v (T)=  -- p(T),  a/jkt = Po 

flgkt = O, 7Ukt = I't2K3 e 
Po T ~'o'~t, 

S ijkl = ~ ( 6 ik (~ jl "~- 6 il(~ jk -- ~ 6 ij6 ki ) 

We note that the condition fl(T) = 0 follows also from simple physical 
considerations: the term 

0 OT 
T) Ox--, 

is Galilei invariant for any given temperature T(x,  t) in only the trivial case 
fl(T) = 0. 
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The following particular classes of solutions of QSF equations should 
be mentioned: 

(a) Stationary solutions, for which our equations coincide with SNIF 
equations. (6) 

(b) Isotermal solutions, i.e., 

T =  const =~ p = const, Po = const (26) 

for which our equations coincide with incompressible Navier-Stokes 
equations of the form 

div u =0,  ~+u.-~x u+gradp=Au (27) 

after the self-evident change of variables p-" ~p, x- , f ix,  t---, yt with 
0t, fl, )J = const. (4, 5) 

(c) Isobaric solutions, i.e., po=const .  Then the system (17) reads 

) OtT +divT ' div u-~r/gradT =0 
(28) 

2(T) p(T)  
r / =  , K =  

Po Po 

1 ( ~ + u ' 0 - ~ )  

0 ( Oui --x 2 fK  02T K 30T OT'~\ 
= O x-~ 2K -~-~X k t, 2 O X , O X k + ~ -~-'~X i -~-~X k J l ) (29 )  

The Prandtl number Pr =/zcpl2 is usually supposed to be equal to 2/3 
(it is exactly so for Maxwell molecules only); therefore we put 

Then we can eliminate ~/and rewrite the second equation in (28) as 

div[u- 3x(T) grad T] = 0 (30) 

In particular, Eqs. (28)-(30) describe the problem in the whole space 
with equilibrium boundary conditions in infinity. In the more general case 
the choice of the function po(t) is defined by initial and boundary condi- 
tions. Roughly speaking, one should first construct "the general solution" 
for T(x, t) and u(x, t), which depends on an arbitrary function po(t), and 
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then define this function from initial and boundary conditions. We con- 
sider for illustration certain one-dimensional problems in the next 
section. 

To conclude this section we discuss in more detail the connection 
between QSF equations (28)-(29) (for simplicity we put po=const  and 
consider the problem in the whole space) and the incompressible Navier- 
Stokes equations (27). The QSF equations do not contain e and define 
the leading asymptotic (with e ~  oo) terms only. Moreover, the equality 
po=const  follows immediately from the assumption u =  O(e) (slowness) 
and our time scaling (quasistationarity); therefore p = O(e 2) is in fact the 
leading (nontrivial) asymptotic term for the pressure. As to the tem- 
perature T(x, t) and its derivatives, they are assumed to be O(1). To find 
T(x, t) one needs to solve Eqs. (28)-(29). In particular, we can choose the 
simplest (with respect to the temperature) solution T(x, t)=const, which 
means an additional assumption (isothermality), unlike the above- 
mentioned equality p0=const.  Under this assumption we obtain for 
u(x, t) and p(x, t) Eqs. (27). Thus the QSF equations are correct in 
the isothermal case; however, they cannot be applied to weakly non- 
isothermal problems. Roughly speaking, they contain information about 
leading asymptotic terms for u(x, t), T(x, t), and p(x, t) and nothing 
more. If, for example, we consider a solution of the Boltzmann equation 
(2) for which T(x, t )=  To[1 +e2O(x, t )+. . . ] ,  then the QSF equations are 
useless for the calculation of O(x, t). To do this one should return to the 
above asymptotic expansion of Eqs. (6) and (7) and then consider some 
higher order (in e) equations. An asymptotic expansion of this kind was 
discussed briefly in ref. 5 (pp. 334, 339). It is clear that in this 
case the equation for O(x, t) appears to be similar to the usual equa- 
tion of thermal conduction in an incompressible fluid (see, for example, 
ref. 17, p. 188), which, unlike the QSF equations, includes a viscous heat- 
ing term. 

The QSF equations are not applicable to a description of small 
fluctuations of temperature caused by the dissipation of the bulk velocity. 
The natural domain of their applicability is connected mainly with heat 
transfer problems in which the slow motion of a gas is caused by large 
temperature gradients (thermal convection is described for the stationary 
case in refs. 6 and 16). In some sense the isothermal case T =  T O can be 
considered as a "very singular" point of the QSF equations: they are for- 
mally correct a t ' the  point T =  To, but they are incorrect in any small 
neighborhood I T -  Tol/To-- O(e 2) of this point. 

However, there exists a wide class of physical problems which should 
be considered on the basis of the QSF equations. We consider some typi- 
cal problems in the next part of this paper (Sections 4-6). 

822/80/5-6-10 
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4. O N E - D I M E N S I O N A L  PROBLEMS 

Suppose that all functions in (28)-(30) depend on the single space 
variable x, which is directed along a unit vector k (in this section we 
denote three-dimensional vectors by bold letters and derivatives by corre- 
sponding subscripts). Then we can express the velocity by 

u=uk+u• u . u •  u=k-u, Ikl=l (31) 

and obtain the following equations for T, u, and p: 

(po/T), + po(u/T)x = 0 

3 ( l n p o ) , + ( u - - 3  ) ~ xTx = O, x =/alPo (32) 
x 

We obtain from the second equation of (32) 

pou(X, t) = (3/2) pT x -- ~,(t) -- (3/5) x~(t) 

with unknown functions ~,(t) and ~b(t)=pg(t). Then the first equation of 
(32) reads 

Po( T - ' ) ,  + 2~t(5 T) - ( ~k + 3x(b15 )( T - ' )x  + (3,u Txl2 T)x = 0 

Let us consider now the heat transfer between two parallel plates 
with x coordinates x~<xz;  then the boundary conditions are 
u(xl) =u(xz )=0 ,  T(x l )=  T1, T(x2)= Tz (diffusion reflection conditions 
are assumed for the Boltzmann equation). The functions if(t) and ~b(t) are 
defined by the relations 

~k + 3x,,~/5 = 3p(T,) T'(x,,), n= 1, 2 

therefore 

3[x2/.t(T=) T'(xl)--xl/-t(T2) T'(x2) ] ~= 
2(x2 --xl)  

~b = 5[/~(T2) T'(x2)-/~(T1) T'(xl)]  
2(x2 - x l) 

Finally, we introduce a new time variable, putting dr = dt/po(t), and 
reduce the problem to a single equation, 

y ,+~r  3[kt(y- '  ) - ,  = Y Yx].,:, x t < x < x 2 ,  y = T  - l  (33) 
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with boundary conditions y(xl)= T{  1 and y(X2)= T21 and with given 
initial data. After the solution y(x, r) is found one can define the function 
~b(r) = p'o(t) and then put 

po(r)= po(O) exp [ ~ dr q~(r)] , t= po(O) ;~ ds exp [ f~ dr ck(r)] 

In such a way we obtain the solution of the problem relating to the 
heat transfer between two parallel wails. It should be noticed that the 
velocity equation in (17) is needed in the one-dimensional heat transfer 
problem only for constructing the nonequilibrium pressure p(x, t). 

Let us consider now the simpler initial value problem in the infmite 
domain with the conditions T ~  T~ with x~-T-oo.  Then po=const ,  
~b = ff = 0, and we obtain the quasilinear diffusion equation for the density 
p=poT-~: 

p, = [D(p)  Px]x, O(p) = 3#(po/p)/(2p) (34) 

After the function p(x, t) satisfying this equation and given initial 
conditions is found, we can define the nonequilibrium pressure p(x, t) 
( p ~ O  with Ix[---, ~ )  by formula 

p(x, t) = 4tcux/3 -- (2xz/3)(Kz T~x + K3 T~/T) - u2/T - 3KTt/(2T) (35) 

To obtain this formula the identity [ F ( T ) T x ] , = [ F ( T ) T , ] . ,  was used. 
We note that in the one-dimensional heat transfer problem the Burnett 
terms result in a small correction to the equilibritma pressure and do not 
change the temperature. It will be shown below that the situation is quite 
different in the multidimensional case. 

Finally we consider the equation for u• [see (31)] 

1(0 ) 0 ~u~ 
7" ~ + U ~ x  u •  3x" u•177176 (36) 

If T(x, t) and u(x, t) are known, then it is a ~imple linear equation. 
Hence, in the one-dimensional case the most important step is solving the 
nonlinear diffusion equation (34). 

It is remarkable that for Maxwell molecules we obtain D ( p ) =  
Bop-2, (t'2) and l~q. (31) may be linearized in the following way/t2) We 
put p = zx, r = Dot in (31) and obtain 

z,=z~Zzx~, lira z(x, t)/x =p~ (37) 
x ~ q:  o o  
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Let us pass from z(x, t) to the inverse function x(z, t) by the for- 
mulas 

w(y, t ) = x ,  y = z ( x ,  t) 

Then 

W y  = Z-~ 1 ~ W y y  = - - Z x  3 Z x x  ~ W t = - - Z x 3 Z t  

i.e., Eq. (34) reduces to the linear diffusion equation 

W t = W y y  

Hence, for Maxwell molecules we are able in principle to construct 
the exact general solution of Eqs. (32) and (36) with equilibrium bound- 
ary conditions P o~ = const, Too = const at infinity. 

5. M U L T I D I M E N S I O N A L  S T A T I O N A R Y  P R O B L E M S  

We consider now the full system of equations (17). The following 
properties of these equations should be noted. 

1. Equations (17) include functions po(t) and T(x, t), which are 
O(1) with e ~ 0 ,  and also the functions u(x,t)  and p(x, t ) ,  which 
correspond to small corrections O(e) and O(e2), respectively, to the limit- 
ing values u = 0 and p =Po. 

2. Equations (17) do not contain e, i.e., they define the e = 0  limit 
values po(t) and T(x, t). It is important that these limiting values cannot 
be found without knowledge of the functions u(x, t) and p(x, t), in spite 
of the fact that these functions are irrelevant at e = 0. 

These properties show the important role of the Burnett terms in 
(17). Let us consider the stationary heat transfer problem with boundary 
conditions 

Tire= Ti, U[r,=O, i= 1, 2 ..... N (38) 

on certain isothermal surfaces /'i. In the Navier-Stokes approximation 
[K2 = K3 = 0 in (17)] one can put u = 0, p = 0 and reduce the problem to 
the usual stationary boundary value problem for the nonlinear heat 
equation 

div x(T) grad T= O, Tire= T~ (39) 

which is equivalent to the usual linear Laplace equation. Let us assume now 
that K2.3 ~ 0. Then the stationary solutions with u(x, t) - 0 are admissible 
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only under the following condition: the solution of the boundary value 
problem (39) guarantees the solvability of the equation for p(x, t), 

Pxk = - l-tc2(T)(Kz Tx,xe + (K3/T) Tx, Txk] ~, 

i.e., the right-hand part has to be the k th  component of the gradient vector. 
The equation can be simplified and written as 

VH = 1;'( T)(VT) 2 VT 

F(T)=K2(xK"--x '2 )+(K3/2) (x /T)  2 , V = grad (40) 

with a certain function H(x) (see below). Finally, we write down the 
necessary condition of the absence of convection [i.e., u(x, t ) = 0 ]  as the 
condition of consistency of the equations 

Vx(T) V T =  0, rot[ F( T)(VT) 2 VT] = 0 

and boundary conditions (38). This necessary condition was first obtained 
in ref. 6 and it was proved that this condition is fulfilled only in "very 
symmetric" cases (concentric spheres or coaxial cylinders). In more general 
cases the stationary solution of (17) implies u(x , t )~O; some special 
solutions were described in ref. 6. 

Hence, in the general case the thermal stresses induce convection 
currents, this physical effect being absent in the Navier-Stokes description. 
The effect is very interesting from the physical point of view and has been 
discussed in detaiU 6" ~6~ We note that the corresponding velocity has an 
order O(e) and disappears in the limiting case e = 0; therefore it is formally 
a small correction. However, there exists another effect that remains 
nonzero even at the limit e = 0; 

6. S T A T I O N A R Y  T E M P E R A T U R E  FIELD AT THE L IM IT  ~ = 0  

According to the Navier-Stokes equations, the temperature T(x) 
satisfies the stationary heat equation (39). However, it follows from the 
stationary equations (17) that 

(3/2) div ~:(T) grad T =  div u = u. grad In T (41) 

These equations are compatible with (39) only if 

div u'= 0, u .grad T = 0 ,  div K(T) grad T =  0 (42) 

These conditions are obviously weaker than the above condition u = 0. 
We describe below the special class of solutions of (17) with the 

temperature satisfying the heat equation (39). In this case we can fmd the 
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temperature from the boundary value problem (39) and then Consider it as 
a given function. The Burnett terms in (17) can be expressed as 

[K2(K2 Tx,x, + ( K3/T) Tx~ Tx k) ] x, = --K3(K2/T)(VT) 2 + F(T)(VT) 2 Tx, 

with F(T) from (40). Therefore, putting in (17) 

17= p + K3(K2/T)(VT) 2 

we obtain equations which are formally similar to the incompressible 
Navier-Stokes equations 

div u = 0, Ulr~= 0, i = 1  ..... N 

1 ( O )  OH 0 / Ou~ Ouk'~ OT 
.~ u.-~x u n + a x k = ~ x ~ x , + c 3 x , j + F ( T ) ( V T ) 2 - -  (43) OXk 

This system of equations with given function T(x) defines the velocity 
field u(x). However, if the solution of (43), u(x), does not satisfy in the 
general case the orthogonality condition 

u. grad T =  0 (44) 

then the conjecture that the temperature satisfies the heat equation (39) is 
wrong. It is clear that the additional condition (44) is fulfilled only for very 
special cases, so that in the general case the Navier-Stokes equations do 
not result in the correct temperature field T(x) at the limit e = 0. 

We consider in more detail two-dimensional flows with the stream 
function B(x, y) such that 

u=(ux, uy) ,  u.,~=Br, uy= --B,., T= T(x,y), p=p(x , y )  

Then it follows from the orthogonality condition (43) that 

B,,Tx--B, Ty=O 

i.e., the stream function depends on x, y only through the temperature 
T(x, y), B = B(T). The streamlines coincide with isotherms. Introducing a 
new function ~ (T)  such that cb'(T)=x(T), we notice that the function 
ck(x,y) = ~[T(x ,y)]  satisfies the Laplace equation zJ~=0 .  Therefore we 
can consider an analytic function 

f(z)  = r y) + i~b(x, y), Ar = A~b = 0 
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where ~ and ~ are conjugate harmonic functions. The streamlines and 
isoterms coincide with the lines Re f = c o n s t .  Let us introduce a new 
unknown function A(~) by 

ux = A($) St, uy= - A ( $ )  Sx (45) 

We consider the functions T, x(T), and F(T)  as given functions of 
$: T = T ( $ ) ,  K(T)=0~($), F(T)=C($). Finally, we exclude the function 
II(x, y) from Eq. (42) and obtain the equation 

L 
u'-~x uy + C(r162 \ ax ax,,/j Oy - 

O 

+ X l = X ,  x =y 

It is possible to pass to new independent variables r=~(x,y),  
s =  ~,(x, y) [conformal mapping by the analytic function f ( z ) ] .  In these 
variables the last equation reduces to an ordinary differential equation of 
the third order for the unknown function A(r) 

3 

k,(r, s) A~")(r) + k4(r, s) A(r) A'(r) +ks(r, s) A2(r) + k6(r, s) = 0  
n = 0  

with given coefficients k,(r, s), n = 0 ..... 6. The solution of this equation in 
the general case is a function of both variables r and s. Therefore the 
equality A = A ( r )  defines certain additional conditions on the coefficients 
k,(r, s). In particular, the example described in ref. 6 (gas flow between two 
sides of the angle) corresponds to such a degenerate case. 

Finally we would like to stress once more that in the general case the 
limiting (at e = 0) temperature does not satisfy the usual heat equation. Of 
course, the above equations and also SNIF equations are derived formally 
on the basis of certain conjectures and therefore all consequences of these 
equations should be considered with certain care. We discuss this question 
in detail in the next section. 

7. C O N C L U S I O N S  

We have considered above some special cases of rarefied gas flows 
with small Knudsen numbers e--* 0 when the time evolution of the 
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hydrodynamic parameters p, u, T is described by the QSF equations (17), 
which are more complex than the usual Navier-Stokes equations. The 
QSF equations can be considered as a nonstationary version of the SNIF 
equations. (6~ In the isothermal case Eqs.(17) are equivalent to the 
incompressible Navier-Stokes equations. 

The QSF equations are derived from the Boltzmann equation on the 
basis of three conjectures: 

1. Quasistationarity, i.e., f (x ,  v, t l e ) = f ( x ,  v, etle), t ~  oo, e~O, 
7= et is finite. 

2. The distribution function f(x,v, 71e) admits an asymptotic 
expansion 

7= o + 

including terms not less than of the third order in e. 

3. Slowness, i.e., 

~ dv fo(X, v, ?)v=0 

The incompressible Navier-Stokes 
following additional conjecture: 

4'. Isothermality, i.e., 

equations correspond to the 

1 f dv fo(x, v, 7) = const ro=F;o 

The last two conjectures result in the following. The limiting distribu- 
tion function f appears to be an absolute Maxwell distribution function 
that corresponds to the approach used earlier. (4'5) We note that the 
incompressible Navier-Stokes equations can be easily derived from the 
compressible Navier-Stokes equations in a similar way without any con- 
nection to the Boltzmann equation (M. N. Kogan first called my attention 
to this fact in 1991 ). 

Finally, the SNIF equations t6~ correspond to the substitution of 
conjecture 1 by  the following conjecture: 

I'. Stationarity, i.e., f (x ,  v, t ie )=f(x ,  vie). 

In connection with stationary problems an interesting open problem 
should be mentioned. It is clear that according to the Navier-Stokes 
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equations the stationary temperature distribution in the limiting case e = 0 
satisfies the heat equation 

div 2(T) grad T =  0 (46) 

However, it is wrong according to the SNIF equations (and our con- 
jectures 1', 2, and 3) and it is necessary to solve a much more complex 
system of equations. The solution of this system does not coincide with the 
solution of the heat equation except for some degenerate cases. 

The SNIF theory ~6) predicts an absence of gas convection for e = 0, 
which is in complete agreement with the Navier-Stokes equations; 
however, it also predicts a non-Navier-Stokes temperature field at the 
same limit. At the same time the simple heat equation is very customary in 
physics and it is difficult to reject it. Is it possible that this equation 
remains valid? In principle the answer can be positive if we weaken conjec- 
ture 2 and substitute it by the following: 

2'. f ( x ,  v, ~1 e) admits an asymptotic expansion 

Y:Y0 +,Y, + :Y2 +. 

including terms of not less than second order in e. 
Then the stationary hydrodynamic equations will be written in the 

form 

u 2 
p = const, div ~ = 0, p div u = ~ div ~(T) grad T (47) 

If we suppose that the temperature satisfies Eq. (46), then the velocity 
satisfies the equations 

div u = 0 ,  u .grad T = 0  (48) 

As mentioned above, the general solution of these equations for the 
plane case T =  T(x, y), u = u(x, y), u~ = 0 reads 

OT ~T 
u x =F(T)uy-~-" uy= - F ( T )  a---x (49) 

with an arbitrary function F(T). Let us suppose that the conjecture 2', not 
2, is valid. For example, 

f=fo +e771 +t2f2 + t3 In eY3 +... 
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Then the SNIF equations are not valid, but Eqs. (47) remain correct. 
In this case the velocity can be found not from the SNIF equation but in 
some different way. It is obviously possible that the temperature satisfies 
Eq. (46) and the velocity satisfies (48), (49), or even u = 0 .  

We note that the standard Chapman-Enskog expansion is essentially 
nonstationary; therefore the validity of the stationary Navier-Stokes equa- 
tions is not self-evident a priori. It was proved in refs. 14 and 15 that they 
are valid for a certain class of one-dimensional problems, but the same 
question becomes much more difficult in the two-dimensional case. At the 
same time it should be stressed that there is no contradiction between the 
above equations and the Navier-Stokes equations in the one-dimensional 
case; the contradiction appear for higher dimensional problems only. 

Thus it is desirable to clarify this question and to obtain a definite 
answer with regard to the limiting e -* 0 temperature field in the heat trans- 
fer problems for the Boltzmann equation. Besides a rigorous mathematical 
analysis of this limiting case, it is possible to use numerical experiments. 
For instance, in the problem of the heat transfer between two noncoaxial 
cylinders, which was solved numerically in ref. 13, one can compare the 
temperature field with the solution of the heat equation (46). This equation 
is equivalent to the usual Laplace equation and therefore can be solved 
without any serious difficulties. If some stable e ~ 0 deviations from the 
solution to the Laplace equation should be observed, then it could be 
considered as a confirmation of the validity of the SNIF and QSF equations. 
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